A Computational Meshless Method for Solving Multivariable Integral Equations
نویسنده
چکیده مقاله:
In this paper we use radial basis functions to solve multivariable integral equations. We use collocation method for implementation. Numerical experiments show the accuracy of the method.
منابع مشابه
a computational meshless method for solving multivariable integral equations
in this paper we use radial basis functions to solve multivariable integral equations. we use collocation method for implementation. numerical experiments show the accuracy of the method.
متن کاملA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملA New Iterative Method For Solving Fuzzy Integral Equations
In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are valid.
متن کاملA Computational Method for Solving Linear Volterra Integral Equations
The aim of the present paper is to introduce numerical method for solving linear Volterra integral equations of the second kind.The main idea is based on the adaptive Simpson's quadrature method .The technique is very effective and simple.We show that our estimates have a good degree of accuracy.
متن کاملa computational method for nonlinear mixed volterra-fredholm integral equations
in this article the nonlinear mixed volterra-fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (m3d-bfs). this method converts the nonlinear mixed volterra-fredholm integral equations into a nonlinear system of algebraic equations. the illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملA Meshless Computational Method for Solving Inverse Heat Conduction Problem
In this paper, a new meshless numerical scheme for solving inverse heat conduction problem is proposed. The numerical scheme is developed by using the fundamental solution of heat equation as basis function and treating the entire space-time domain in a global sense. The standard Tikhonov regularization technique and L-curve method are adopted for solving the resultant ill-conditioned linear sy...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 18 شماره 4
صفحات 317- 321
تاریخ انتشار 2007-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023